
The reflectivity of a Fabry-Perot cavity of length L with input mirror reflectivity ri and
end mirror reflectivity re is

r(φ) =
−ri + ree

−2iφ

1− riree−2iφ
(1)

where φ = ωL/c is the phase a field of frequency ω accrues going one-way along the cavity.
Eq. (1) also holds when the mirrors are compound cavities with complex reflectivities. A
cavity is said to be resonant if the round-trip phase is zero and anti-resonant if the round-trip
phase is π. Taking the possibly complex arm reflectivities into account, these conditions are

resonant : arg (riree
−2iφ) = 2πn (2a)

anti-resonant : arg (riree
−2iφ) = (2k + 1)π. (2b)

Eq. (1) is the fundamental relation that sets the macroscopic cavities lengths.

1 Arm Cavities

The arm cavities are chosen to be resonant for the carrier ω0 and (nearly) anti-resonant for
the sidebands ω0 ± Ωi. The end mirrors are highly reflective re ≈ 1 and so

rarm(ω0) =
−ritm + 1

1− ritm

= 1. (3)

If the sidebands were exactly anti-resonant

rarm(ω0 + Ωi) =
−ritm − 1

1 + ritm

= −1. (4)

In practice the sidebands are chosen to not be exactly anti-resonant in order to avoid higher
harmonics from resonating in the arms. The sidebands thus have complex reflectivities

rarm(ω0 + Ωi) = |rarm(Ωi)|eiθi (5)

where |π − θi| � 1. For the 40 m arm cavities, θ1 = 180.5◦ and θ2 = 182.5◦.

2 Power Recycling Cavity

The power recycling cavity length is chosen so that the carrier and both sidebands are
resonant in the PRC when the arms are resonant for the carrier. For the carrier

arg
[
rprmrarm(ω0)e−2iω0Lprc/c

]
= 2πn (6)

and so Lprc is microscopically adjusted such that ω0Lprc/c = nπ. For the f1 sideband

arg
[
rprm|rarm(Ω1)|eiθ1e−2iω0Lprc/ce−2iΩ1Lprc/c

]
= θ1 + 0− 2Ω1Lprc

c
= 2πn (7)
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and so the power recycling length must satisfy

Lprc =

(
k +

θ1

2π

)
c

2f1

. (8)

If (8) is satisfied for f1 then it is automatically satisfied for f2 = 5f1 if θ2 − π = 5(θ1 − π).
For the 40 m, we choose k = 0 giving Lprc = 6.753 m.

3 Signal Recycling Cavity

The signal recycling cavity length is chosen so that the f2 sideband is resonant and the f1

sideband is non-resonant in the SRC when the arms are resonant for the carrier. Since the
phase the carrier accrues in the SRC differs between signal recycling and resonant sideband
extraction, the two cases have different requirements for the SRC length.

Signal Recycling With signal recycling the carrier does not acquire any phase in the
SRC. This is the same as with the PRC. Since the f2 sideband is also resonant in the PRC,
the same condition (8) is necessary for Lsrc and f2. Since f1 has to be non-resonant in the
SRC, however, the conditions that must be simultaneously satisfied are

Lsrc =

(
n+

θ2

2π

)
c

2f2

(9a)

Lsrc 6=
(
m+

θ1

2π

)
c

2f1

. (9b)

For the 40 m the first three lengths satisfying (9) are 1.336, 4.045, and 9.463 m. For the
upgrade we choose n = 1 giving Lsrc = 4.045 m.

Resonant Sideband Extraction With RSE, the carrier has a one-way phase shift of
π/2. So for the f2 sideband to be resonant in the SRC,

arg
[
rsrm|rarm(Ω2)|eiθ2e−2iω0Lsrc/ce−2iΩ2Lsrc/c

]
= θ2 + π − 2Ω2Lsrc

c
= 2πn. (10)

The conditions that must be simultaneously satisfied are thus

Lsrc =

(
n+

1

2
+
θ2

2π

)
c

2f2

(11a)

Lsrc 6=
(
m+

1

2
+
θ1

2π

)
c

2f1

. (11b)
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General Detuning For a general detuning, leading to an optical spring, the carrier picks
up a one-way phase of φ. Thus, for f2 to be resonant,

arg
[
rsrm|rarm(Ω2)|eiθ2e2φe−2iΩ2Lsrc/c

]
= θ2 + 2φ− 2Ω2Lsrc

c
= 2πn. (12)

The conditions that must be simultaneously satisfied are thus

Lsrc =

(
n+

2φ+ θ2

π

)
c

2f2

(13a)

Lsrc =

(
m+

2φ+ θ1

π

)
c

2f1

(13b)

(13c)

4 Schnupp Asymmetry

Once the lengths of the recycling cavities are set, the Schnupp asymmetry is chosen so
that the f2 sideband is critically coupled into the SRC. To find the couplings we need the
transmission from the PRC to the SRC in a DRMI with X and Y mirror reflectivities given
by (5). With the lengths defined as

Lprc = Lp +
ly + lx

2
, Lsrc = Lc +

ly + lx
2

, lsch = ly − lx, (14)

we define the following phases:

φx =
ωlx
c
, φy =

ωly
c
, φ± =

φy ± φx
2

=
ωlsch

2c
, (15a)

φp =
ωlprm−bs

c
, φprc =

ωLprc

c
= φp + φ+, (15b)

φs =
ωlsrm−bs

c
, φsrc =

ωLprc

c
= φs + φ+. (15c)

Note that, unlike with LIGO, the 40 m X arm is in reflection and the Y arm is in transmission
of the beamsplitter as seen from the PRC.

The transmission and reflection of a simple Michelson formed by the beamsplitter and
end mirrors with reflectivities given by (5) are

tmich =
rarm

2
e−2iφ+

(
e2iφ− − e−2iφ−

)
= irarme−2iφ+ sin 2φ− (16)

rmich =
rarm

2
e−2iφ+

(
e2iφ− + e−2iφ−

)
= rarme−2iφ+ cos 2φ−. (17)

Using this, the transmission from the PRC to SRC is

tprc→src =
irarme−i(φ++φsrc) sin 2φ−

1− rarm(rprme−2iφprc + rsrme−2iφsrc) cos 2φ− + r2
armrprmrsrme−2i(φprc+φsrc)

. (18)
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Eq. (18) can be simplified by noting that all fields we are considering are resonant in the
PRC and so θ − 2φprc = 0:

tprc→src =
irarme−i(φ++φsrc) sin 2φ−

1− |rarm|[rprm + rsrmei(θ−2φsrc)] cos 2φ− + |rarm|2rprmrsrmei(θ−2φsrc)
. (19)

Eq. (19) must be used for general fields resonant in the PRC. However, for f2 which also
must be resonant in the SRC, θ2 − 2φsrc = 0 and the transmission is

tprc→src(f2) =
irarme−i(φ++φsrc) sin 2φ−

1− |rarm|(rprm + rsrm) cos 2φ− + |rarm|2rprmrsrm

. (20)
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